黄诺帝

副教授

所在系所:智能制造与信息工程研究所

电子邮件:nhuang@sjtu.edu.cn

通讯地址:机械与动力工程学院A楼719室

个人主页:

个人简介
教学工作
科研工作
荣誉奖励

教育背景

2010.09-2017.03  上海交通大学机械工程专业,博士
2015.08-2016.08  佐治亚理工学院机械工程系,联合培养博士
2006.09-2010.06  武汉大学机械设计制造及其自动化专业,学士

工作经历

2020.06至今  上海交通大学机械与动力工程学院,长聘教轨副教授
2019.01-2020.02  多特蒙德工业大学ISF研究所,洪堡学者/博士后
2017.04-2020.06  武汉大学动力与机械学院,博士后

研究方向

精密测量与加工:
1. 大尺寸先进计量与形性质量评估
*机器人运动精确引导、卫星天线高精度装调、柔性飞机蒙皮多维质量评价
2. 机床/机器人装备精度测量与补偿
*机床空间/热/动态误差测量与补偿、机器人几何误差测量与运动精度评估
3. 在机测量与加工误差补偿
*数控系统光顺插补、复杂曲面在机测量规划、性能驱动的自适应加工

*设计与制造I:2022-2025年春
*智能制造装备与技术:2023年春

科研项目

2024.12-2025.12  上海市教育委员会人工智能促进科研范式改革赋能学科跃升计划专项“基于深度学习模型的五轴数控机床热误差实时预测与补偿,负责人

2024.10-2026.09  科技部国家重大科技专项“***铣切机床入线验证,合作方负责人

2024.01-2028.12  国家自然科学基金国家重大科研仪器研制项目“大型复杂构件原位制造跨尺度在线协同测量系统”,合作方负责人

2023.07-2026.06  工信部高质量发展专项项目“***加工制造生产线”,合作方负责人

2021.01-2024.12  国家自然科学基金面上项目“基于加工-测量-仿真一体化的薄壁件切削变形与颤振自适应闭环控制”,负责人
2021.01-2022.12  上海交通大学机械系统与振动国家重点实验室自主课题“卫星主承力桁架结构切削颤振抑制技术”,负责人
2020.11-2022.10  上海市浦江人才计划,负责人
2020.02-2021.12  上海航天科技创新基金“基于高效三维几何原位测量的多轴数控加工过程优化”,负责人
2019.07-2020.04  博士后科学基金特别资助项目“基于三维原位测量的薄壁件切削变形识别、预测与补偿”,负责人
2018.01-2020.12  自然科学基金青年科学基金“面向接触式原位测量的复杂曲面加工精度检测方法研究”,负责人
2018.01-2019.04  博士后科学基金面上项目“深腔结构件插铣加工机理及其工艺规划”,负责人

代表性论文专著

[1]  Bu H, Huang N*, Huang J, Liu G, Wang Y, Zhu L. Geometric feature extraction and its profile accuracy evaluation for pockets on curved aircraft skin from scanned point clouds[J]. Measurement Science and Technology, 2025, 36: 015021.

[2]  Zhang Y, Shen Y, Cui Y, Zhong L, Huang N*, Zhu L. Touch-trigger probe error compensation for nonvertical on-machine measurement of freeform surface workpieces[J]. IEEE Transactions on Instrumentation & Measurement, 2024, 73: 1008108.

[3]  Huang N*, Hou L, Zhang Y, Zhang X, Zhu L. A systemic approach to identify the volumetric and dynamic errors for five-axis machine tools with double ball-bar test[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(7-8): 3379–3388.

[4]  Jia G, Zhang X, Shen Y, Huang N*. Intermittent Multivariate Time Series Spindle Thermal Error Prediction under Wide Environmental Temperature Ranges and Diverse Scenario Conditions[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(9-10): 3379–3388.

[5]  Hou L, Zhang Y, Jing L, Du, Z, Huang N*, Zhu L. A comprehensive error evaluation method for non-rigid body gantry machine tools considering quasi-static crosstalk based on optimized multilateration measurement[J]. Measurement, 2024, 230: 114476.

[6]  Liang R, Yu Y, Chen J, Zhang X, Ren M, Huang N*, Zhu L. Tool path generation with a uniform residual error distribution considering tool contour error for ultra-precision diamond turning[J]. Journal of Manufacturing Processes, 2024, 115: 466-480.

[7]  Zhao Z, Huang N*, Shen Y, Jia G, Zhang X, Zhu L. Modeling and prediction of full-term thermal error in linear axis of machine tools based on MSTGCN-A[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(9-10): 4805–4819.

[8]  Li R, Huang N*. Zhang Y, Zhu L, Ibaraki S. Binocular vision measurement system for geometric error of 3D printers at high temperature[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(5-6): 2771-2783.

[9]  Hua L, Zhao Y, Zhou J, Zhang Y, Huang N*, Zhu L. Five-axis toolpath interpolation method with kinematic corner smoothing and time synchronization[J]. Journal of Manufacturing Processes, 2023, 105: 338-358.

[10]  Zhang Y, Huang N*, Hou L, Zhong L, Zhang Y, Zhu L. Intelligent sampling strategy for freeform surfaces based on on-machine measurement through real-time interactive communication[J]. IEEE Transactions on Instrumentation & Measurement, 2023, 72: 1008308.

[11]  Jia G, Zhang X, Wang X, Zhang X, Huang N*. A spindle thermal error modeling based on 1DCNN-GRU-Attention architecture under controlled ambient temperature and active cooling[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1525-1539.

[12]  Zhao Z, Huang N*, Zhong L, Du Z, Ibaraki S, Zhu L. On-machine measurement of thermal influence of the long-span crossbeam of gantry machine tools using a 3D laser profiler[J]. Precision Engineering, 2023, 82: 52-61.

[13]  Yi B, Li R, Li W. Wang X, Wu S, Huang N*. Adaptive milling for contours on deformed surface based on on-machine measurement and optimized parallel projection. The International Journal of Advanced Manufacturing Technology[J], 2023, 126(1-2): 443-452.

[14]  Hua L, Huang N*, Yi B, Zhao Y, Zhu L. Global toolpath smoothing for CNC machining based on B-spline approximation with tool tip position adjustment[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7-8): 3651-3665.

[15]  Yi B, Liang R, Wang X, Wu S, Huang N*. Free-form surface form error evaluation based on smaller-scale sampling points in touch-trigger probing[J]. Precision Engineering, 2022, 76: 255-260.

[16]  Yi B, Qiao F, Hua L, Wang X, Wu S, Huang N*. Touch trigger probe-based interference-free inspection path planning for free-form surfaces by optimizing the probe posture[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1002108.

[17]  Huang N, Hua L, Huang X, Zhang Y, Zhu L*. Biermann D. B-spline based corner smoothing method to decrease the maximum curvature of the transition curve[J]. Journal of Manufacturing Science and Engineering, 2022, 144(5): 054503.

[18]  Huang N, Zhang Y, Zhu L*, Ibaraki S. Visually quantifiable test piece for five-axis machine tools thermal effects[J]. Journal of Manufacturing Science and Engineering, 2022, 144(5): 054501.

[19]  Yi B, Qiao F, Huang N*, Wang X, Wu S, Biermann D. Adaptive sampling point planning for free-form surface inspection under multi-geometric constraints[J]. Precision Engineering, 2021, 72: 95-101.

[20]  Huang X, Wu S, Liang L, Li X, Huang N*. Efficient trochoidal milling based on medial axis transformation and inscribed ellipse[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(3): 1069-1076.

[21]  Huang N*, Krebs E, Baumann J, Zhou Y, Wu S, Biermann D. Experimental investigation on influence of engagement angle and tool geometry on plunge milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5-6): 1973-1981.

[22]  Huang N*, Krebs E, Baumann J, Wirtz A, Jaeger M E, Biermann D. A universal pocket plunge milling method to decrease the maximum engagement angle[J]. Journal of Manufacturing Science and Engineering, 2020, 142(8): 081005.

[23]  Huang N, Jin Y, Lu Y, Yi B, Li X, Wu S*. Spiral toolpath generation method for pocket machining[J]. Computers & Industrial Engineering, 2020, 139: 106142.

[24]  Huang N, Jin Y, Li X, Liang L, Wu S*. Identification of integrated geometric errors of rotary axis and setup position errors for 5-axis machine tools based on machining test[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 1487-1496.

[25]  Huang N, Jin Y, Lu Y, Li X, Wu S*. Plunge milling with constant scallop height by adaptively modifying the step interval for pocket wall[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 203-208.

[26]  Huang N, Yin C, Liang L, Hu J, Wu S*. Error compensation for machining of large thin-walled part with sculptured surface based on on-machine measurement[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 4345-4352.

[27]  Huang N, Lynn R, Kurfess T*. Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation[J]. Journal of Manufacturing Science and Engineering, 2017, 139(5): 051011.

[28]  Huang N*, Zhang S, Bi Q, Wang Y. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4): 505-512.

[29]  Huang N, Jin Y, Bi Q*, Wang Y. Integrated post-processor for 5-axis machine tools with geometric errors compensation[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 65-73.

[30]  Huang N, Bi Q, Wang Y*. Identification of two different geometric error definitions for the rotary axis of the 5-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 109-114.

[31]  Huang N, Bi Q, Wang Y*, Sun C. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 1-8.

软件版权登记及专利

*多轴机床热误差的可视化测量系统及方法. 发明专利, ZL202110859050.5

*基于最大曲率优化的B样条拐角光顺方法和系统. 发明专利, ZL202110350758.8

*基于最大切削包角约束的型腔分区插铣刀具路径规划方法. 发明专利, ZL201910925021.7
*一种基于三角网格简化的复杂曲面检测自适应采样方法. 发明专利, ZL201810980899.6

*一种基于轮廓中轴线的型腔高效螺旋铣削刀具路径规划方法. 发明专利, ZL201810099154.9

*面向接触式测量的曲面自适应采样点规划系统.  软件著作权, 2019R11L1526701

*2024.01  上海交通大学优秀班主任

*2020.11  上海市浦江学者
*2018.07  德国洪堡基金会洪堡学者