王炜哲
研究员所在系所:叶轮机械研究所
办公电话:021-34205083
电子邮件:wangwz0214@sjtu.edu.cn
通讯地址:上海交大机械与动力工程学院A楼537室
个人主页: AI (人工智能) + Mechanics (力学) + Chip(芯片) ,招收硕士、博士、博士后
教育背景
2003.09 - 2007.10,上海交通大学,动力机械及工程,博士
2000.09 - 2003.06,上海交通大学,动力机械及工程,硕士
1996.09 - 2000.06,河海大学, 热能动力工程, 学士
工作经历
2010.04 - :上海交通大学机械与动力工程学院 / 叶轮机械研究所 / 助理研究员、副研究员、研究员 / 博士生导师
2012-2013、2014、2015: 德国斯图加特大学MPA / 访问学者
2007.11 - 2010.03: 上海交通大学机械与动力工程学院 / 机械工程 / 博士后
研究方向
招收如下相关专业的博、硕士研究生,以及博士后。
动力工程及工程热物理;机械工程;航空航天;计算机软件;流体力学;固体力学;数学;物理;光学。
1.高温结构强度设计方法及安全评价(储能装备)
2.极端稀疏传感器驱动高温结构热力数字孪生技术
3.传感与计算融合的力-热耦合损伤预测、材料属性逆向预测及结构健康评估
4.光-热-力耦合的集成电路中结构热变形预测
5.极端环境下的结构热力协同管理(发动机热端部件,新能源电动车电池热管理)
6.近场动力学:力-热-化交互作用下金属材料结构渐进损伤预测
7.边缘端计算:FPGA + 数字孪生体技术的高温装备热力状态采算一体化
8.工业装备结构:阀门/汽缸/转子/叶片/密封等工业部件结构强度预测
9.物理驱动降阶/超降阶技术的工业部件快速优化设计
基于互联网技术的应用(目前拥有自主可控的成套软件平台/系统)
已商用的全厂仿真系统:分散式虚拟DCS,200+仿真及真实现场控制模块,实现万点测点实时仿真应用
基于工业以太网架构的动力系统实时仿真及控制(工业控制系统为对象,孪生工业流程系统,实现智能控制)
系统结构热力状态的在线健康感知(物联网应用,低维数字孪生(仪器仪表动态过程+机器学习)和高维数字孪生(部件结构三维空间的信息实时计算),云-边协同)
学术兼职
13)《Materials: Metals and Alloys》, 编委
12)《热能动力工程》,编委
11)The 15th Asia-Pacific Conference on Fracture and Strength, Scientific Committee,Session Chair, Invited Speaker
10)2018-,中国机械工程学会材料分会青年委员会,委员
9)ASME PVP Committee Member
8)ASME PVP Conference Session Organizer
7)TURBO EXPO 2018(ASME Turbo Expo): Session Organizer, Session Chair
6)TURBO EXPO 2017(ASME Turbo Expo, Power & Energy and ICOPE): Session Organizer, Session Chair
5)ASME TURBO EXPO 2016:Session Co-Chair (COMM 27 Structures & Dynamics: Emerging Methods in Design & Engineering: Optimization & New Methods Development)
4)2016 NexTurbine 第五届下一代燃气轮机峰会,分会场主席
3)2016-, 中国造船工程学会轮机学术委员会辅机分会,委员
2)2012-, 国际期刊《Recent Patents on Mechanical Engineering》编委
1)山东省“能源计量与节能减排”专家论坛大会上作为特邀专家
基于数字孪生的装备测试技术,授课对象:研究生,学时:16,学分1
(如何利用降维技术手段,结合传感器采集数据,实现在线或准在线快速全场预测)
能源装备与工业大数据分析,授课对象:研究生,学时:32,学分2
(在维持高精度情况下,如何进行降维快速计算,面向工业数据或对象,开展数据增强、挖掘、以及分析)
机械与动力仿真实践(能动类),授课对象:本科,学时:64,学分4
(高维+高保真计算方法:CFD+FEM,实现流动、传热、结构强度的计算分析,了解底层计算原理和如何开展工程应用)
++++++++++++++++++++++++
毕业的博士:
王涵(2024毕业,国家奖学金,哈尔滨工业大学,师资博士后)
宁路源(2024毕业,国际会议DACOMA-23最佳演讲奖,斯坦福大学,博士后)
江耿辉(2024毕业,南京理工大学,讲师)
RICHARD AMANKWA ADJEI(2020毕业,宁波诺丁汉大学,Assistant Professor)
洪 辉 (2020毕业,中国商发,“心”计划)
蔡振威 (2020毕业,上海宇量昇科技有限公司,上海市“超级博士后”计划,国家自然科学青年基金)
蒋季伸 (2019毕业,中山大学,副教授)
赵乃龙 (2018毕业,阿里巴巴,算法工程师)
毛剑峰 (2014毕业,与刘应征联合指导,浙江工业大学,副教授)
焦广臣 (2014毕业,与刘应征联合指导,上海辉策信息科技有限公司,资深技术经理)
毕业的硕士:
高开楠(2025毕业,华为,结构和材料工程师)
张钟文(2025毕业,阿里巴巴平头哥,半导体)
李宇航(2024毕业,上海飞机设计研究院,信息化)
朱兰馨(2024毕业,上海电气发电机厂)
何新宇(2022毕业,中国商发)
陈强强(2021毕业,阿里巴巴,算法工程师)
罗淇元(2021毕业,阿里巴巴,算法工程师)
张子凡 (2021毕业,英格索兰)
蒋凌欣(2020毕业,日本东京电子)
牛鹏坤(2020毕业,深圳 TP-LINK)
李 乾 (2020毕业,上海交通大学,博士生)
赵文辰(2019毕业,美国密西根大学)
马思琦(2019毕业,远景能源)
吴 穹 (2015毕业,中国航天科工集团第九总体设计部)
喻 超 (2014毕业,华东电力设计研究院)
戴 伟 (2011毕业,霍尼韦尔汽车零部件服务(上海)有限公司)
邬文睿(2009毕业,上汽集团)
科研项目
主持项目:
64) 2025-2026,企业合作,汽轮机内缸椭圆度快速优化研究(稀疏数据 + HPROM + ML + Sym Reg,混合应用技术)
63) 2025-2026,企业合作,工业汽轮机汽缸结构热力状态快速计算技术及边界快速筛选(扩充海量设计工况范围 + 极端压缩设计周期)
62) 2025-2026,企业合作,融合虚拟传感器方法的高温复杂承压结构健康状态预测(全三维损伤/材料属性逆向预测)
61) 2025-2026,企业合作,融合传感器采集数据高压模块变形及间隙预测(核电全三维数字孪生在线应用)
60) 2025-2026,企业合作,工业汽轮机汽缸和罩壳结构优化分析及建议
59) 2025-2026,企业合作,低摩擦滑动支撑方式研究
58) 2025-2026,基金项目,近场动力学在核承压设备断裂力学分析中的应用研究
57) 2024-2025,国防合作,卡箍紧固件密封失效仿真分析(螺栓系统结构)
56) 2023-2024,企业合作,空气透平阀门、汽缸、转子、叶片整套系统结构强度及运行条件匹配设计
55) 2023-2024,企业合作,核电厂汽轮机调门严密性改进
54) 2023-2024,企业合作,核电汽轮机末级长叶片气动、振动及强度研究
53) 2023-2024,企业合作,复杂运行工况下汽缸法兰-螺栓结构组件系统的热力数字孪生技术
52) 2023-2024,企业合作,100MW等级光热汽轮机快速频繁启停热部件寿命分析及启动策略优化
51) 2023-2024,企业合作,高温段变反动度叶片的气动与强度算法研究
50) 2022-2023,企业合作,燃机透平叶片强度评估及裂纹预测技术研究
49) 2022-2022, 企业合作,H级联合循环汽轮机三维数字孪生体技术的可视化寿命实时在线计算
48) 2022-2022, 企业合作,H级联合循环汽轮机三维数字孪生体技术的智能化运行方式研究及优化
47) 2021-2022,企业合作,基于虚拟DCS技术的船用助推动力系统数字化软件开发
46) 2021-2022,企业合作,超低温阀门的流动和强度预测及优化技术
45) 2021-2022,国际合作,现场传感数据驱动下高速旋转部件温度场数字孪生体
44) 2021-2022,企业合作,现场传感数据驱动下厚壁部件热力数字孪生体
43) 2020-2021,企业合作,特种阀门的高温蠕变作用机制及应对措施
42) 2019-2020,国际合作,电站系统全范围故障库开发及智能预警研究
41) 2019-2020,企业合作,动力保障系统XX动态性能实时仿真及分析
40) 2019-2020,国际合作,基于虚拟DCS技术的全范围、全工况数字化电站仿真系统
39) 2019-2020,企业合作,煤电机组寿命评估要素分析与延寿策略
38) 2019-2020,企业合作,某发动机盐雾腐蚀环境下结构疲劳设计方法研究
37) 2019-2020,企业合作,蠕变疲劳交互作用下预紧配合结构力学行为研究
36) 2019-2020,企业合作,蠕变疲劳交互作用下金属接触密封的变形及寿命研究
35) 2019-2022,国家自然科学基金面上项目(No. 51875341 ,燃气轮机叶片含孔热障涂层中TGO热生长及其对涂层多层结构应力演化影响的研究
34) 2018-2021,国家“两机专项”(No. 2017-V-0002)子课题,XXX盐雾腐蚀XXX技术
33) 2018-2019,国际合作,Analysis and modeling of heat transfer in automotive turbochargers
32) 2018-2019,国际合作,电站全范围运行优化的数字化动态系统研发
31) 2017-2018,企业合作,快速冷启准则制定、结构优化及强度评估
30) 2016-2019,国际合作,燃气轮机关键技术:结构热力状态评估及预测技术手段
29) 2016-2019,国际合作,材料老化特性对断裂力学参数影响的方法研究
28) 2016-2018,企业合作,蠕变疲劳交互作用下局部高温区多结构的变形及寿命评价研究
27) 2016-2018,企业合作,快速冷启承压结构变形及强度优化
26) 2016-2017,企业合作,HW试验管理平台方案设计
25) 2016-2017,企业合作,基于冷却技术的700°C阀门结构设计及安全评估方法
24) 2016-2017,企业合作,700°C下高温承压部件结构强度分析及安全评估流程研究
23) 2016-2017,国际合作,Design optimization of compressor impeller with optimization tool
22) 2015-2016,国际合作,Rotor disk 3D feature analysis and optimization method study
21) 2015-2016,国际合作项目—斯图加特大学合作,高温部件试验及剩余寿命评估
20) 2015-2016,国际合作,高速离心压缩机动静干涉作用的数值研究
19) 2015-2016,国际合作,Combustor structure analysis
18) 2015-2016,企业合作,1200MW超超临界中压模块强度预测及安全评估
17) 2015-2017,企业合作,现役超超临界机组关键部位损伤取样分析技术研究
16) 2014-2015,上海交大学科技创新专项,燃气轮机热端部件强度分析和结构设计安全评估方法研究
15) 2014-2015,企业合作,蒸汽滤网冲击性能分析
14) 2014-2015,企业合作,蒸汽燃气联合循环HIP流动换热及结构安全分析
13) 2012-2013,企业合作,超高压承压部件和高速旋转部件启停优化及蠕变疲劳寿命评估
12) 2011-2013,上海航天基金,点发热源驱动空间温度变化分析及结构优化
11) 2011-2012,企业合作,大型核电低压转子应力腐蚀疲劳寿命评估
10) 2011-2012,企业合作,新型高压阀门设计方法及安全评估技术
9) 2011-2012,企业合作,转动部件狭隙环腔内流固耦合传热及预测技术
8) 2010-2011,企业合作,高温旋转部件蠕变疲劳耦合寿命损伤计算
7) 2010-2012,国家自然科学基金,接触式高压气流密封接触点传热及流固耦合传热研究
6) 2009-2010,机械系统与振动国家重点实验室开放基金,先进密封流固热力预测技术
5) 2010-2011,上海交通大学“青年教师启动计划”,指尖密封的高温蠕变及滞后效应
4) 2010-2011,上海交通大学 “医工(理 交叉研究基金”,动静脉畸形数字化仿真技术
3) 2010-2011,企业合作,高温部件大螺纹环及其附件结构分析和设计规范的建立
2) 2009-2010,企业合作,超超临界660MW机组高温部件蠕变疲劳强度计算
1) 2009-2010,上海飞机设计研究院,起落架缓冲器密封技术研究
代表性论文专著
(一作/通讯作者)
=> Han Dong, Hongjiang Wang, Jiahao Zhong, Chaohui Huang, Weizhe Wang, Yingzheng Liu, Geometry-adaptive reduced-order peridynamics for fast simulation of mechanical and thermal behaviors, Computer Methods in Applied Mechanics and Engineering, Submitted, Feb. 2025
=> Hongjiang Wang, Chaohui Huang, Han Dong, Jiahao Zhong, Weizhe Wang, Yingzhengliu, Loss-function-free inverse prediction by a non-intrusive hyper-reduced-order model integrated single sensor, with application to a turbine valve, Applied Energy, Submitted, 2025
=> Hongjiang Wang, Han Dong, Chaohui Huang, Weizhe Wang, Yingzhengliu, Physics-sensing framework driven by non-intrusion hyper-reduced-order model with extremely sparse data: Application to an industrial high-temperature component, Energy, Revised, 2024
=> Han Wang, Kai Huang, Weizhe Wang, Licheng Guo, Corrosion fatigue behaviours of a Fe-Ni-Cr based alloy in NaCl solution: experimental-inspired peridynamics modellings, European Journal of Mechanics / A Solids, Submitted, 2024
=> Chaohui Huang, Hongjiang Wang, Hongmei Zhang, Weizhe Wang , Yingzheng Liu, A hyper-reduced-order model for the rapid thermal behavior analysis of high-temperature rotor blades, Journal of Thermal Stresses, Submitted, 2024.
=>Hongjiang WANG, Han DONG, Zhaohui HUANG , Weizhe Wang, Yingzheng LIU, A nonintrusive finite-orthogonal-basis reduced-order model for accelerated computation of geometrically parameterized problems, International Journal for Numerical Methods in Engineering, Submitted, Nov. 2024.
=>Genghui Jiang, Ming Kang, Zhenwei Cai, Han Wang, Yingzheng Liu, Weizhe Wang, A hyper reduction model for fast thermo-mechanical behavior analysis of turbomachinery components, International Journal of Thermal Sciences, Under Review, 2023
2025年论文
[167] Han Wang, Kai Huang, Weizhe Wang , Licheng Guo, Irregular nonuniform peridynamics based fatigue failure analysis of a blade-shroud-like structure, Engineering Fracture Mechanics, Accepted, 2025
[166] Han Dong, Hongjiang Wang, Jiahao Zhong, Chaohui Huang, Weizhe Wang, Yingzheng Liu, A snapshot-free reduced-order peridynamic model for accelerating fracture analysis of composites, Computer Methods in Applied Mechanics and Engineering, 2025, 437: 117777.
2024年论文
[165] Hongjiang Wang, Weizhe Wang, Yingzheng Liu, A finite-orthogonal-basis reduced-order model framework for solving partial differential equations,Physics of Fluids, Accepted, 2024
[164] Han Dong, Hongjiang Wang, Chaohui Huang, Jiahao Zhong, Weizhe Wang, Yingzheng Liu, Reduced-order peridynamics for efficient simulation of fracture in a turbine blade root, Engineering Fracture Mechanics, Accepted, 2024
[163] Hongjiang Wang, Genghui Jiang, Weizhe Wang, Yingzheng Liu, A novel hyper-reduction framework featuring direct projection without an approximation process, Physics of Fluids, Accepted, 2024.
[162] Genghui Jiang, Ming Kang, Zhenwei Cai, Han Wang,Yingzheng Liu, Weizhe Wang, Hyper-reduced-order model for estimating convection heat transfer coefficients of turbine rotors, Applied Thermal Engineering, Accepted, 2024
[161] Han Dong, Han Wang, Weizhe Wang, Yingzheng Liu, A non-ordinary state-based peridynamic model for creep–fatigue behavior and damage evolution, International Journal of Fatigue,Accepted, 2024
[160] Hongjiang Wang, Genghui Jiang, Weizhe Wang, Yingzheng Liu, A reduced-order configuration approach for the real-time calculation of three-dimensional flow behavior in a pipe network, Physics of Fluids, Accepted, 2024
[159]Han DONG, Han WANG, Zhenwei CAI, Weizhe Wang, Yingzheng LIU, Peridynamics–FEM coupling for interfacial delamination effected by vertical crack density in thermal barrier coatings, International Journal of Applied Mechanics, 2024, 16(1): 2450005-1-25
[158] Han Wang, Han Dong, Zhenwei Cai, Yingzhengliu ,Weizhe Wang, Fatigue behaviors of a nickel-based superalloy after hot-corrosion: experiments and peridynamic simulations, International Journal of Fatigue, 2024, 180: 108070-1-21
2023年论文
[157] Han WANG, Han DONG, Zhenwei CAI, Yingzheng LIU, Weizhe Wang, Peridynamic-based analysis on the fracture behaviors of the gas turbine blade, Engineering Fracture Mechanics, Accepted, 2023
[156] Han DONG; Han WANG; Genghui JIANG; Zhenwei CAI; Weizhe Wang; Yingzheng LIU, An adaptive partitioned reduced order model of peridynamics for fast fracture simulation, Engineering Analysis with Boundary Elements, 2023, 157: 191-206
[155] Luyuan Ning, Zhenwei Cai, Han Dong, Yingzheng Liu, Weizhe Wang, Physics-informed neural network frameworks for crack simulation based on minimized peridynamic potential energy, Computer Methods in Applied Mechanics and Engineering, 2023, 417: 116430-1-20.
[154] Han Dong, Han Wang, Zhenwei Cai, Weizhe Wang, Yingzheng Liu, An enhanced adaptive coupling strategy of peridynamics and finite element method via variable horizon approach for simulating quasi-static fracture problems, Engineering Fracture Mechanics, 2023, 290: 109492-1-18.
[153] Genghui Jiang, Ming Kang, Zhenwei Cai, Han Wang, Yingzheng Liu, Weizhe Wang, Efficient reduced-order model for multiaxial creep–fatigue analysis based on a unified viscoplastic constitutive model, International Journal of Fatigue, 2023, 175: 107787-1-11
[152] Zhenwei Cai, Lijie Qiao, Xiaofeng Zhao, Weizhe Wang, Stress evaluation of TBCs with inclined film-cooling hole considering CMAS penetration-induced change of thermo-mechanical properties, Engineering Failure Analysis, 2023, 150: 107340-1-15.
[151]Han Wang, Han Dong, Zhenwei Cai, Yingzheng Liu, Weizhe Wang, Corrosion fatigue crack growth in stainless steels: A peridynamics-based numerical study, International Journal of Mechanical Sciences, 2023, 254: 108445-1-16
[150] Luyuan Ning, Lijie Qiao, Zhenwei Cai, Yingzheng Liu, Weizhe Wang, Elasticity-mechanics-informed generative adversarial networks for predicting the thermal strain of thermal barrier coatings penetrated by CaO–MgO–Al2O3–SiO2, European Journal of Mechanics - A/Solids, 2023, 100: 105027-1-13
[149] Ming Kang, Shifang Wu, Yingzheng Liu, Weizhe Wang, Viscoplastic model-based analysis of in-service oscillation temperature and thermal stress in a rotating component, International Journal of Thermal Sciences, 2023, 188: 108246-1-12
[148]Luyuan Ning, Zhenwei Cai, Han Dong, Yingzheng Liu, Weizhe Wang, A peridynamic-informed neural network for continuum elastic displacement characterization, Computer Methods in Applied Mechanics and Engineering, 2023, 407: 115909-1-24
[147]Han WANG, Zhenwei CAI, Han DONG, Yingzheng LIU, Weizhe Wang, Mechanical-chemical-coupled peridynamic model for the corrosion fatigue behavior of a nickel-based alloy, International Journal of Fatigue, 2023,168: 107400-1-16
2022年论文
[146] Han Wang, Han Dong, Zhenwei Cai, Yuhang Li, Weizhe Wang, Yingzheng Liu, Peridynamic-based investigation of the cracking behavior of multilayer thermal barrier coatings, Ceramics International, 48(16): 23543-23553, 2022
[145] Genghui Jiang, ChenhaoTan, Wenwei Jiang, Kai Yang, Weizhe Wang, Xiaowei Gao, Shape reconstruction in transient heat conduction problems based on radial integration boundary element method, International Journal of Heat and Mass Transfer, 2022, 191: 122830
[144]Genghui Jiang, Ming Kang, Zhenwei Cai, Han Wang, Yingzheng Liu, Weizhe Wang, Online reconstruction of 3D temperature field fused with POD-based reduced order approach and sparse sensor data , International Journal of Thermal Sciences, 175, 107489, 2022.
[143]Genghui Jiang, Ming Kang, Han Wang, Zhenwei Cai, Yingzheng Liu, Weizhe Wang, Data-driven temperature estimation of non-contact solids using deep-learning reduced-order models, International Journal of Heat and Mass Transfer, 185, 122383, 2022.
[142]Shifang Wu, Ming Kang, Zhenwei Cai, Weizhe Wang, Multi-axial creep-fatigue analysis of a cracked groove structure subjected to cyclic thermal loading, Engineering Failure Analysis, 131, 105826, 2022.
2021年论文
[141]Zhang, X., Shao, H., Zhou, W.., Wang, W. Z., and Liu, Y. A Comprehensive Heat Transfer Study Inside a Steam Turbine Valve: Experiment, Numerical Simulation, and Simplified Model, ASME. J. Eng. Gas Turbines Power. September 2021,143(9).
[140]ZhenWei Cai, Zi-Fan Zhang, Ying-Zheng Liu, Xiao-Feng Zhao , Weizhe Wang, Numerical Study on Effect of Non-Uniform CMAS Penetration on TGO Growth and Interface Stress Behavior of APS TBCs, Chinese Journal of Mechanical Engineering, 34:128, 2021.
[139]Luyuan Ning, Zhenwei Cai, Yingzheng Liu, Weizhe Wang, Conditional generative adversarial network driven approach for direct prediction of thermal stress based on two-phase material SEM images, Ceramics International, 47(24): 34115-34126, 2021.
[138]Luyuan Ning, Zhenwei Cai, Xiaofeng Zhao, Yingzheng Liu, Weizhe Wang, Fast Stress Evaluation of the Top Coat of Thermal Barrier Coatings under CaO–MgO–Al2O3–SiO2 Penetration Based on Image Recognition and an Artificial Neural Network, Ceramics International, 47(13), 18252-18261,2021
[137]Han WANG, Zhenwei CAI, Zifan ZHANG, Yingzheng LIU, Xiaofeng ZHAO, Weizhe Wang, Dynamic evolution of nonuniform temperature-stress distributions in continuously eroding thermal barrier coatings, Surface & Coatings Technology, 2021, 401, 126946 .
[136]R.A. Adjei, C.W. Fan, Weizhe Wang, Y.Z. Liu, Multidisciplinary Design Optimization for Performance Improvement of an Axial Flow Fan using Freeform Deformation, ASME Journal of Turbomachinery, Jan 2021, 143(1): 011003-1-18
[135]H. Hong, Z.W. Cai, Weizhe Wang, Y.Z. Liu, An Online Monitoring Method for Creep-Fatigue Life Consumption with Real-Time Damage Accumulation, International Journal of Damage Mechanics, 30(5) 764–785, 2021.
[134]Chen, W., Liu, Y., Wang, W., Zhao, X., Peng, D., 2021, “Interface detection in laser drilling of air plasma sprayed thermal barrier coatings by laser-induced breakdown spectroscopy”, Optics and Lasers in Engineering, vol.137, 106351.
[133] H Wang, ZW Cai, Weizhe Wang, YZ Liu, Peridynamic Simulation of Cracking Behavior in Thermal Barrier Coatings, the 14th International Conference on Damage Assessment of Structure, Shanghai, Oct.29-Nov.1, 2021 (Journal of Physics: Conference Series, 2184 (2022) 012045)
2020年论文
[132]H. Hong, Z.W. Cai, H. Wang, Weizhe Wang, Y.Z. Liu, A Model-Guided Neural Network for the Prediction of Creep Behavior under In-Service Conditions, ASME Journal of Engineering for Gas Turbines and Power, 2020, 142(7): 071008-18
[131]Z.W. Cai, H. Hong, X.F. Zhao, Weizhe Wang, Y.Z. Liu, Z.M. Cao, A numerical study of the influence of interface morphology on the stress behavior in thermal barrier coatings near an inclined-film cooling hole, Ceramics International, 2020, 46(11), 18142-18150
[130]Z.W. Cai, H. Hong, D. Peng, X.F. Zhao, Weizhe Wang, Y.Z. Liu, Z.M. Cao, Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading, Surface & Coatings Technology, 381(15), 2020, 125146
[129]J.S. Jiang, D.WU, W.Z. Wang, X.F. Zhao, X.F. Ma, B. Wang, H.J. Shi, Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings, Ceramics International, 3(46), 2020: 3644-3654
[128]T. Cai, ,S. Guo, Y. Li, D. Peng, X. Zhao, W.Z. Wang, Y.Z. Liu, Ultra-Sensitive Mechanoluminescent Ceramic Sensor based on Air-Plasma-Sprayed SrAl2O4:Eu2+, Dy3+ Coating, Sensors and Actuators A: Physical, 315, 2020:112246.
2019年论文
[127]H. Hong, Weizhe Wang, Y.Z. Liu, High-temperature fatigue behavior of a turbine rotor under flexible operating conditions with variable loading amplitudes, International Journal of Mechanical Sciences, 163, 2019, 105121
[126]R.A. Adjei, Weizhe Wang, Y.Z. Liu, Aerodynamic Design Optimization of an Axial Flow Compressor Stator Using Parameterized Free-Form Deformation, ASME JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 2019, 141(10): 101015
[125]Z.W. Cai, J.S. Jiang, Weizhe Wang, Y.Z. Liu, Z.M. Cao, CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs, Ceramics International, 2019, 45(11), 14366-14375
[124]N.L. Zhao, Anish Roy,W.Z. Wang, Liguo Zhao,Vadim V. Silberschmidt, Coupling crystal plasticity and continuum damage mechanics for creep assessment in Cr-based power-plant steel, Mechanics of Materials, 2019, 130, 29-38.
[123]J.S. Jiang, L.X. Jiang, X.F. Zhao, Weizhe Wang, Y.Z. Liu, Z.M. Cao, Numerical stress analyses of the TBC-film cooling system under the operating condition considering the effects of thermal gradient and TGO growth, Surface & Coatings Technology, 2019, 357, 433-444
[122]Weizhe Wang, Y.Z. Liu, Continuum damage mechanics-based analysis of creep-fatigue-interaction behavior in a turbine rotor, International Journal of Damage Mechanics, 2019, 28(3), 455-477
[121]Fuqi Li, Bryan Quay, Peng Wang, Domenic A. Santavicca, Weizhe Wang, Sihua Xu, and Yingzheng Liu, Transient thermal behaviors of a scaled turbine valve: Conjugate heat transfer simulation and experimental validation, International Journal of Heat and Mass Transfer,2019, 141, 116-128
[120]Guo Songtao, Cai Tao, Zhao Xiaofeng, Peng Di, Xiao Ping, Wang Weizhe, Liu Yingzheng, Generalization of the quantitative stress-intensity relationship of mechanoluminescent sensor SrAl2O4:Eu2+,Dy3+ in elastic domain, Measurement Science and Technology,2019,30(7)
2018年论文
[119]Li, Y., Peng, D., Wang, W.Z., Liu, Y., Oouchida, S., Kawakubo, T., Yakushiji, A., Comparison of PSP and TSP Measurement Techniques for Fast Rotating Blades, AIAA Aviation 2018, AIAA 2018-3317.
[118]J.S. Jiang, X.F. Zhao, Weizhe Wang, Y.Z. Liu, Z.M. Cao, Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading, Engineering Fracture Mechanics, 2018, 196(1): 191-205
[117]J.S. Jiang, Z.H. Zou, Weizhe Wang, X.F. Zhao, Y.Z. Liu, Z.M. Cao, Effect of internal oxidation on the interfacial morphology and residual stress in air plasma sprayed thermal barrier coatings, Surface & Coatings Technology, 2018, 334(25):215-226
[116]B.Q. Xu, J.S. Jiang, Z.H. Zhou, W.Z. Wang, X.F. Zhao, Y.Z. Liu, P. Xiao, Time-dependent spalling behavior of thermally grown oxide induced by room temperature interfacial deformation, Surface & Coatings Technology, 2018, 334(25): 164-172
[115]J.S. Jiang, J.D. Yang, L. Xiao, S.H. Xu, Weizhe Wang, Y.Z. Liu, Numerical analysis of the impact effect of foreign bodies on a steam strainer in a steam turbine valve, Journal of Mechanical Science and Technology, 2018, 32 (1) :405-413
[114]N.L. Zhao, Weizhe Wang, Y.Z.Liu, Intergranular mechanical behavior in a blade groove-like component by crystal plasticity model with cohesive zone model, Engineering Fracture Mechanics, 2018, 201(1):196-213
[113]R.A. Adjei, Weizhe Wang, D. Peng, T. Bamba, Y.Z. Liu, Non-Uniform Tip Clearance Effects on Turbocharger Compressor Performance, Proceedings of ASME Turbo Expo, June 11-15, Norway, 2018
[112]Yifeng Hu, Gang Chen, Weizhe Wang, Investigation of Stress-Strain Behavior of a Component Under Variable Frequency Non-Proportional Loading, GT2018ASME Turbo Expo 2018 , June 11-15, 2018, Oslo, Norway
[111]Li Yongzeng, Peng Di, Wang Weizhe, Liu Yingzheng, Oouchida Satoshi, Kawakubo Tomoki, Yakushiji Akimitsu, Comparison of PSP and TSP measurement techniques for fast rotating blades, 34th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2018, 2018-06-25 To 2018-06-29
2017年论文
[110]Weizhe Wang, S.H. Xu, Y.Z. Liu, Numerical investigation on creep-fatigue behavior in a steam turbine inlet valve under cyclic thermo-mechanical loading, ASME Journal of Engineering for Gas Turbines and Power, 2017, 139(11), 112502-112502-15.
[109]N.L. Zhao, Weizhe Wang, J.S. Jiang, Y.Z. Liu, Study of Creep-Fatigue Behavior in a 1000 MW Rotor Using a Phenomenological Lifetime Model, Journal of Mechanical Science and Technology, 2017, 31(2): 605-614.
[108]J.S. Jiang, B.Q. Xu, Weizhe Wang, Richard Adjei, X.F. Zhao, Y.Z. Liu, Finite Element Analysis of the Effects of Thermally Grown Oxide Thickness and Interface Asperity on the Cracking Behavior Between the Thermally Grown Oxide and the Bond Coat, ASME Journal of Engineering for Gas Turbines and Power, 2017, 139: 022504-1-9.
[107]Z.W. Cai, Weizhe Wang, H. Hong, R5 Code Based Creep Analysis of a Thick-Wall Cylinder With Steam Film Cooling Hole Structure, ASME PVP July 16-20, USA, 2017
[106]J.S. Jiang, Z.W. Cai, Weizhe Wang, Y.Z. Liu, Finite element analysis of thermal-mechanical behavior in the thermal barrier coatings with cooling holes structure, Proceedings of ASME Turbo Expo, June 26-30, USA, 2017
[105]R. A. Adjei, Weizhe Wang, J.S. Jiang, Y.Z. Liu, T. Kawakubo, Numerical investigation of unsteady shock wave motion in a transonic centrifugal compressor, Proceedings of ASME Turbo Expo, June 26-30, USA, 2017
2016年论文
[104]Weizhe Wang, P. Buhl, A. Klenk, Y.Z. Liu, A continuum damage mechanics-based viscoplastic model of adapted complexity for high temperature creep-fatigue loading, ASME Journal of Engineering for Gas Turbines and Power, 2016, 138(9), 092501-10.
[103]Weizhe Wang, P. Buhl, A. Klenk, Y.Z. Liu, The effect of in-service steam temperature transients on the damage behavior of a steam turbine rotor, International Journal of Fatigue, 2016,87, 471–483.
[102]Weizhe Wang, P. Buhl, A. Klenk, Y.Z. Liu, Influence of high-temperature dwell time on creep-fatigue behavior in a 1000 MW steam turbine rotor, Engineering Fracture Mechanics, 2016, 166, 1-22.
[101]Weizhe Wang, P. Buhl, A. Klenk, Y.Z. Liu, Study of creep-fatigue behaviour in a 1000 MW rotor using a unified viscoplastic constitutive model with damage, International Journal of Damage Mechanics;25(2): 178-202, 2016
[100]N.L. Zhao, Weizhe Wang, J.H. Zhang, Y.Z. Liu, Numerical investigation on life improvement of low-cycle fatigue for an ultra-supercritical steam turbine rotor, Journal of Mechanical Science and Technology, 2016, 30(4), 1747-1754
[99]N.L. Zhao, Weizhe Wang, H. Hong, Richard Adjei, Y.Z. Liu, Mechanical behavior study of steam turbine casing bolts under in-service conditions, ASME TURBO EXPO 2016
[98]H. Hong, Weizhe Wang, N.L. Zhao, Z.W. Cai, Y.Z. Liu, Influence of temperature and pressure fluctuation on the mechanical behavior of a seal structure in steam turbine valve under in-service condition, ASME TURBO EXPO 2016
[97]Z.W. Cai, Weizhe Wang , Y.Z. Liu, R5 procedure based damage estimation in a steam turbine valve under in-service conditions, ASME Pressure Vessels and Piping, Canada, Vancouver, 2016
[96]H. Hong, Weizhe Wang , Y.Z. Liu, Fatigue life investigation of a high pressure inner casing under in-service conditions, ASME Pressure Vessels and Piping, Canada, Vancouver, 2016
[95]Z.W. Cai, Weizhe Wang, Y.Z. Liu, Numerical study of steam film cooling behavior in a thick-wall cylinder, 9th China-Japan Bilateral Symposium on High Temperature Strength of Materials, Changsha, China, 2016.
[94]Richard A. Adjei, Weizhe Wang, Nailong Zhao, Yingzheng Liu,Fatigue and lifetime estimation of a highly stressed centrifugal compressor impeller(分组特邀报告),第十八届全国疲劳与断裂学术会议, 2016
2015年论文
[93]Weizhe Wang, Y.Z. Liu, Analysis of the sealing performance and creep behavior of the inner casing of a 1000 MW supercritical steam turbine under bolt relaxation, Engineering Failure Analysis, 57: 363-376, 2015
[92]Weizhe Wang, Y.Z. Liu, P.N. Jiang, Numerical investigation on influence of real gas properties on nonlinear behavior of labyrinth seal-rotor system, Applied Mathematics and Computation, 263: 12-24, 2015
[91]Weizhe Wang, P. Buhl, A. Klenk , A unified viscoplastic constitutive model with damage for multi-axial creep-fatigue loading, International Journal of Damage Mechanics, 24(3): 363-382, 2015
[90]J.S. Jiang, Weizhe Wang , Y.Z. Liu, Application of a creep-damage constitutive model for the rotor of a 1000 MW ultrasupercritical steam turbine, ASME Journal of Engineering for Gas Turbines and Power, 2015, 138(2):022606-022606-6
[89]J.F. Mao, Weizhe Wang, J.H. Zhang, Y.Z. Liu, Numerical investigation on the dynamic behaviors of turbine valve disc–seat impact at low velocity, Journal of Mechanical Science and Technology, 29(2):1-9, 2015
[88]G.C. Jiao, Weizhe Wang, S.J. Tan, C. Yu, Y.Z. Liu, Crack-tip constraint analysis of SENB specimen under creep condition, Journal of Mechanical Science and Technology, 29 (2):1-6, 2015
[87]Z.W. Cai, Weizhe Wang , Study of Creep Damage of a Thin-wall Outer Casing of a 1000MW Ultra-supercritical Steam Turbine, The 13th Asian International Conference on Fluid Machinery, 7th-10th Sept., WASEDA University, Tokyo, Japan, 2015
[86]H. Hong, Weizhe Wang , Numerical Investigation of Creep Behavior of an Inner Casing of a 1000MW Ultra-supercritical Steam Turbine, The 13th Asian International Conference on Fluid Machinery, 7th-10th Sept., WASEDA University, Tokyo, Japan, 2015
[85]J.S. Jiang, Weizhe Wang , Y.Z. Liu, Application of a creep damage constitutive model for the rotor of a 1000 MW ultra-supercritical steam turbine, ASME Journal of Engineering for Gas Turbines and Power, ASME TURBO EXPO 2015, Montreal, Canada, 2015
2014年论文
[84]Weizhe Wang, Analysis of multi-axial creep-fatigue damage on an outer cylinder of a 1000MW supercritical steam turbine, ASME Journal of Engineering for Gas Turbines and Power, 136(11): 112504-112504-8, 2014
[83]Weizhe Wang, Numerical analysis of fatigue life improvement by optimizing the startup phase for a 1000 MW supercritical steam turbine inner casing, ASME Journal of Engineering for Gas Turbines and Power, 137(4):042601-042601-10, 2014
[82]Weizhe Wang, J.H. Zhang, Influence of creep on low-cycle fatigue life assessment of ultra-supercritical steam turbine rotor, ASME TURBO EXPO 2014, June 16-20, Dusseldorf, Germany, 2014
[81]Weizhe Wang, Chao Yu, Junhui Zhang, Yingzheng Liu, Numerical investigation on creep and fatigue behavior of a 1000 MW steam turbine inner cylinder [C. International Conference on Fatigue Damage of Structural Material X, The Resort and Conference Center at Hyannis, MA, USA, 21-26 September 2014
[80]J.F. Mao, Weizhe Wang, Y.Z. Liu, J.H. Zhang, Comparative study of flange-to-seal contact couplings with bolt relaxation under creep condition, ASME Journal of Engineering for Gas Turbines and Power, 136(7):072504-072504-8, 2014
[79]J.F. Mao, W.Z. Wang, Environmental fatigue analysis of a U seal in pressure vessel under simulated LWR operation, Engineering Failure Analysis, 36: 362-371, 2014
2013年以前发表论文.
[78]Mao Jianfeng, Zhang Junhui, Weizhe Wang, The multiaxial creep strength analysis coupling with damage evolution for 3D innercasing of the USC turbine system, 2nd International Conference on Materials Science and Engineering, ICMSE 2013, 2013-03-08 To 2013-03-10.
[77]Jianfeng Mao, Junhui Zhang, Weizhe Wang, Yingzheng Liu, Creep-Fatigue Life Prediction of Stop and Regulating Valves on the Intermediate-Pressure Section of a 1000MW Steam Turbine, GT2013 ASME Turbo Expo 2013, June 3-7, 2013, San Antonio, Texas, USA
[76]J.F. Mao, Weizhe Wang, Y.Z. Liu, Experimental and theoretical investigation on the sealing performance of the combined seals for reciprocating rod, Journal of Mechanical Science and Technology, 26(6): 1765-1772, 2012
[75]P.N. Jiang, Weizhe Wang, Y.Z. Liu, G. Meng, Influence of steam leakage through vane, gland, and shaft seals on rotordynamics of high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine, Archive of Applied Mechanics, 82(2): 177-189, 2012
[74]G.C. Jiao, Weizhe Wang, Crack-tip constraint analysis of two collinear cracks under creep condition, Structural Engineering and Mechanics, 43(3): 311-320, 2012
[73]J.F. Mao, Weizhe Wang, Y.Z. Liu, J.H. Zhang, Multiaxial creep-fatigue life prediction on the rotor of a 1000MW supercritical steam turbine, GT-2012 ASME Turbo Expo, Copenhagen, Denmark, June 11-15, 2012
[72]G.C. Jiao, G. Chen, Weizhe Wang, A model to predict the stress corrosion cracking growth rate of the metallic materials, GT-2012 ASME Turbo Expo, Copenhagen, Denmark, June 11-15, 2012
[71]P.N. Jiang, Weizhe Wang, G.C. Jiao, Analysis of high temperature creep on the nut connection components of a 600MW supercritical steam turbine, GT-2012 ASME Turbo Expo, Copenhagen, Denmark, June 11-15, 2012
[70]Weizhe Wang , Ying Zheng Liu, Guang Meng, Pu Ning Jiang, Influence of rub groove on rotordynamics associated with leakage air flow through a labyrinth seal, Journal of Mechanical Science and Technology, 2010,24(8):1573-1581, 2010.04
[69]Yu Jun, Shi Liu liu, Wang Wei zhe, Liu Ying zheng, CONDITIONAL AVERAGING OF TR-PIV MEASUREMENTS OF WAKE BEHIND SQUARE CYLINDER USING AN IMPROVED CROSS-CORRELATION APPROACH, Journal of Hydrodynamics, 2010, 22(1): 29-34.
[68]Weizhe Wang, LIU Ying-zheng, Meng Guang, Jiang Pu-ning, A nonlinear model of flow-structure interaction between steam leakage through labyrinth seal and the whirling rotor, Journal of Mechanical Science and Technology, 2009(23): 3302-3315.
[67]Weizhe Wang, LIU Ying-zheng, JIANG Pu-ning, CHEN Han-ping, Nonlinear analysis of orbital motion of the rotor subject to leakage air flow through an interlocking seal, Journal of Fluids and Structures, 2009,2 (DOI: 10.1016/j.jfluidstructs.2008.07.009)
[66]Wang Qing, Wang Weizhe, Fei Zhi-min, Liu Ying-zheng, Cao Zhao-min, SIMULATION OF BLOOD FLOW IN INTRACRANIAL ICA-PCOMA ANEURYSM VIA COMPUTATIONAL FLUID DYMAMICS MODELING, Journal of Hydrodynamics, 2009, 21(5): 583-590
[65]Weizhe Wang, LIU Ying-zheng, CHEN Han-ping, et al., Computation of Rotordynamic Coefficients Associated with Leakage Steam Flow through Labyrinth Seal, Archive of Applied Mechanics, Archive of Applied Mechanics, 2007, 77(8): 587-597.
[64]LIU Ying-zheng, W.Z. Wang, Chen Han-ping, .Jing Jian-ping, GE Qing, YUAN Ying, Influence of leakage flow through labyrinth seals on rotordynamics: numerical calculations and experimental measurements, Archive of Applied Mechanics, Archive of Applied Mechanics, 2007, 77(8): 599-612.
[63]Weizhe Wang, LIU Ying-zheng, JIANG Pu-ning CHEN Han-ping, Numerical analysis of leakage flow through two labyrinth seals, Journal of Hydrodynamics Ser.B, 2007, 19(1): 107-112.
[62]Liu Ying zheng, Ke Feng, Wang Wei zhe, Cao Zhao min, PRESSURE-VELOCITY JOINT MEASUREMENTS OF A WALL-BOUNDED TURBULENT SHEAR FLOW, Journal of Hydrodynamics, 2006, 18(3): 315-318.
[61]Ke Feng, Liu Ying zheng, Jin Chun yu, Wang Weizhe, EXPERIMENTAL MEASUREMENTS OF TURBULENT BOUNDARY LAYER FLOW OVER A SQUARE-EDGED RIB,Journal of Hydrodynamics, 2006, 18(3): 461-464.
[60]Ke Feng, Liu Ying zheng, Wang Weizhe, Chen Han ping, WALL PRESSURE FLUCTUATIONS OF TURBULENT FLOW OVER BACKWARD-FACING STEP WITH AND WITHOUT ENTRAINMENT: MICROPHONE ARRAY MEASUREMENT, Journal of Hydrodynamics, 2006, 18(4): 393-396.
[59]Jin Si yu, Liu Ying zheng, Wang Weizhe, Cao Zhao min, Koyama Hide S, NUMERICAL EVALUATION OF TWO-FLUID MIXING IN A SWIRL MICRO-MIXER, Journal of Hydrodynamics, 2006, 18(5): 542-546.
[58]Weizhe Wang, LIU Ying-zheng, Meng Guang, A Nonlinear Model of Rotor-Bearing-Seal System Associated With Leakage Through the Labyrinth Seal, GT2010-Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, June 14-18, 2010, Glasgow, UK
[57]Weizhe Wang, LIU Yingzheng, CHEN Hanping, et al. Numerical and Experimental Investigation of Labyrinth-Seal Flow and Rotor Dynamics, AICFM-9, Jeju, Korea, 2007, 10.
[56]Ke Feng, Liu Ying zheng, Jin Chun yu, Wang Wei zhe,Experimental measurements of turbulent boundary layer flow over a square-edged rib,Conference on Global Chinese Scholars on Hydrodynamics, 2006-07-11 To 2006-07-14.
【中文论文】.
[55]张子凡,韩彦冬,王炜哲,蔡振威,CMAS 渗透下热障涂层界面失效分析,航空动力学报,2021,36(8):1702-1711
[54]陈强强,吴仕芳,康明,洪辉,蔡振威,王炜哲,汽轮机高压缸金属块接触密封蠕变强度与蠕变变形分析,中国电机工程学报, 2021,41(7):2455-2462
[53]罗淇元,韩彦冬,蔡振威,王炜哲, 基于NARX神经网络的汽轮机转子温度变化趋势实时预测,热能动力工程,2021,36(7):39-45
[52]张子凡,蔡振威,王炜哲,彭迪,刘应征,循环热力载荷下含冷却孔热障涂层的强度分析,湘潭大学学报(自然科版), 2019,41(6):104~112
[51]蔡振威,洪辉,王炜哲,刘应征,CMAS渗透对APS热障涂层应力及开裂的影响,第九届国际稀土开发与应用研讨会暨2019中国稀土学会学术年会,2019
[50]王炜哲,蔡振威,洪辉,彭迪,刘应征,复杂载荷下含冷却孔APS热障涂层的结构强度分析,第九届国际稀土开发与应用研讨会暨2019中国稀土学会学术年会,2019
[49]牛鹏坤,洪辉,王炜哲,基于改进遗传算法的电站锅炉效率优化,热能动力工程,2020,35(3):111-115
[48]周觉,蔡振威,王炜哲,基于R5规范的超超临界汽轮机阀门损伤评估,动力工程学报,2019,39(09):705-710,724
[47]蒋凌欣,蒋季伸,王炜哲,体积辐射换热对热障涂层—气膜冷却系统中涂层温度场的影响,动力工程学报,2019,39(06):441-446
[46]陈诗坤,王鹏,蔡振威,洪辉,王炜哲,定参数快速冷启动过程中主汽-调节阀结构强度分析及优化,动力工程学报,2019,39(05):360-365,372
[45]赵乃龙,王炜哲,主蒸汽温度和压力波动对汽轮机转子蠕变疲劳损伤的影响,上海交通大学学报,2019,53(02),127-133
[44]王炜哲,刘应征,蠕变-疲劳-损伤耦合行为本构模型及其在汽轮机高温转子中的应用,第十九届全国疲劳与断裂学术会议,沈阳,2018.8.15-17(邀请报告)
[43]洪辉,王炜哲,高温蠕变下裂纹干涉对损伤行为的影响研究,第十九届全国疲劳与断裂学术会议,沈阳,2018.8.15-17
[42]蒋季伸,王炜哲,刘应征,高温环境下热障涂层-气膜冷却系统的应力分析,第十九届全国疲劳与断裂学术会议,沈阳,2018.8.15-17
[41]蔡振威,王炜哲,刘应征,不同冷却速率对TRISO 核燃料多层结构强度影响的研究,高第十九届全国疲劳与断裂学术会议,沈阳,2018.8.15-17
[40]苏虎,王炜哲等,启停运行工况下超超临界机组高压缸平衡活塞区域结构强度与间隙变化分析,动力工程学报,2018,38(09):713-718,731
[39]朱东晓,王炜哲,水蒸气黏性对非接触式指尖密封动压靴热变形的影响分析,动力工程学报,2017,8:622-628
[38]蔡振威,王炜哲,胡怡丰 ,刘应征,优化启动温升率对汽轮机中压薄壁外缸疲劳行为的影响,第十八届全国疲劳与断裂学术会议, 2016
[37]赵乃龙,王炜哲,刘应征,现场服役机组蒸汽温度波动对汽轮机转子蠕变-疲劳损伤的影响,第十八届全国疲劳与断裂学术会议, 2016
[36]蒋季伸,王炜哲,冷却孔附近热障涂层应力分析,第十一届全国表面工程大会暨第八届全国青年表面工程学术会议,10/22-25,成都,中国
[35]蒋季伸,王炜哲,刘应征,冷却孔附近热障涂层的应力及失效机理分析,2016中国工程热物理年会,11/9-12,广州,中国
[34]赵乃龙,吴穹,王炜哲,张军辉. 超超临界汽轮机高压转子低周疲劳及损伤分析, 上海交通大学学报,2015, 49(5): 590-594.
[33]吴穹,王炜哲,张军辉,胡怡丰,高清辉. 超超临界汽轮机中压转子高温蠕变强度分析,动力工程学报,2015, 35(1):25-29.
[32]喻超,王炜哲,陈钢,核电汽轮机低压焊接转子热处理残余应力的数值分析,动力工程学报,2014,34(01) :19-24,31
[31]喻 超,王炜哲,张军辉,刘应征,超超临界机组高压内缸蠕变强度分析,动力工程学报,2014,34(05):365-370
[30]毛剑峰,张军辉,王炜哲,陈汉平,汽轮机进汽阀U型密封高温强度与密封性能分析. 中国电机工程学报,2013,33(20): 104-110,18.
[29]毛剑峰,王炜哲,张军辉,超超临界汽缸高温强度及多轴蠕变分析,力学季刊,2013,34(3):437-443.
[28]焦广臣,王炜哲,蒋蒲宁,刘应征,核电汽轮机转子结构应力腐蚀裂纹扩展研究,汽轮机技术,2013,55(2):113-114.
[27]谈尚炯,陈钢,焦广臣,王炜哲,陈汉平,喷丸对红套转子应力腐蚀失效概率的影响,热力透平,2013,42(03):181-185.
[26]谈尚炯,王炜哲,陈汉平,刘应征,汽轮机复杂套装转子内部应力分析,动力工程学报,2013, 33(08):581-585.
[25]毛剑峰,王炜哲,刘应征,陈汉平,汽轮机螺栓松弛对汽缸蠕变强度的影响,动力工程,2013,33(2):107-111.
[24]陈钢, 蒋浦宁, 王炜哲,焦广臣, 汽轮机部件应力腐蚀寿命评估方法研究,热力透平, 2012, (03): 179-182,219
[23]焦广臣,王炜哲,马春雷,孙乃杰,基于断裂力学的核电结构完整性评估的数值工具,第16届全国疲劳与断裂学术会议,2012.
[22]毛剑峰,王炜哲,张军辉,刘应征,高参数中压内缸高温强度及多轴蠕变分析,第16届全国疲劳与断裂学术会议,2012
[21]戴伟,王炜哲,刘应征,径向间隙对刷式密封泄漏特性影响的数值分析.动力工程学报,2011,7(31):507-512
[20]刘华锋,王炜哲,蒋浦宁,刘应征, 陈汉平,超超临界汽轮机转子蠕变对低周疲劳应变的影响,动力工程,2010,30(09): 715-719
[19]王炜哲,蒋浦宁,张军辉,刘应征,陈汉平,非比例拉扭组合循环加载下扭转载荷幅对构件应力影响的数值分析,中国动力工程学会透平专业委员会2010年学术研讨会,2010.10
[18]焦广臣, 王炜哲, 蒋浦宁, 刘应征, 陈汉平, 当地应力状况对应力腐蚀裂纹起始寿命的影响分析, 第十五届全国疲劳与断裂学术会议,2010.11
[17]王炜哲,焦广臣,张军辉,刘应征,陈汉平,非比例加载下扭转载荷频率对构件力学行为影响的数值分析,第十五届全国疲劳与断裂学术会议,2010.11
[16]邬文睿,王炜哲,蒋浦宁,刘应征,陈汉平,660MW超超临界汽轮机高压转子的高温蠕变强度分析,动力工程,2009, 29(2):99-103
[15]王青,王炜哲,万大伟,费智敏,刘应征,曹兆敏,三例人体颈动脉分叉管血液动力学的数值对比分析, 水动力学研究与进展:A辑,2009 ,24(3):313-318.
[14]林文进,王炜哲,刘应征,陈汉平,风室试验中轴对称排气引射-混合器的引射特性,上海交通大学学报,2009,43(05): 759-762,771
[13]邬文睿,王炜哲,蒋浦宁,刘应征,陈汉平,660MW超超临界汽轮机高压转子高周疲劳强度分析, 中国动力工程学会第四届青年学术年会,北京,2009.01.
[12]邬文睿,王炜哲,刘华锋,刘应征,660MW超超临界汽轮机高压转子蠕变疲劳耦合分析,2009先进电站用耐热钢与合金国际研讨会,2009.10-21-24,上海.
[11]焦广臣,王炜哲,刘华锋,具有不同裂纹尺寸的三维裂纹试件裂纹端的高温蠕变研究,2009先进电站用耐热钢与合金国际研讨会,2009.10-21-24,上海.
[10]邬文睿,王炜哲,刘华锋,刘应征,660MW超超临界汽轮机高压转子低周疲劳强度分析,中国力学学会2009学术大会,2009.08
[9]王炜哲,邬文睿,刘应征,陈汉平,数值分析交错齿密封结构对密封性能的影响,中国工程热物理学会2008年流体机械学术会议,2008
[8]邬文睿, 万津津, 王炜哲, 刘应征, 600MW亚临界机组主调阀蒸汽流动损失数值分析, 水动力学研究与进展A辑, 2008, (05).
[7]王炜哲, 刘应征, 陈汉平等.汽轮机轴封-转子系统动力学特性的数值分析,动力工程,2007,27(6):845-849 .
[6]王炜哲, 刘应征, 陈汉平等. 迷宫密封—转子系统动力学特性的试验测量和数值模拟,机械工程学报,2007,43(3): 22-27.
[5]王炜哲, 刘应征, 陈汉平等. 迷宫轴封气流周向剪切力对转子动态特性系数的影响,动力工程,2007,27(5): 717-720
[4]王炜哲,施鎏鎏,刘应征等. 1000MW超临界汽轮机主调阀内流动和噪声计算分析,动力工程,2007,27(3): 401-405
[3]韦康, 叶春, 葛诵,王炜哲, 刘应征, 忻建华,气隙激振力对转子临界转速的影响,动力工程学报, 2006, (01): 6-9.
[2]陈献春,杨俊, 周宇阳, 王炜哲, 陈广兵, 董军,基于DCS一体化的球磨机制粉系统仿真建模,热力发电,2005, (01): 40-42,60.
[1]王炜哲,周宇阳,陈汉平,基于图形组态的可压缩流体网络仿真模型,汽轮机技术,2003,6:358-360
软件版权登记及专利
专利软件
1.专利软件名称:密封结构参数管理软件, 授权号:2009SR050154
2.专利软件名称:空压机内密封泄漏流动分析软件, 授权号:2009SR050163
3.专利软件名称:密封系统非线性转子动力学分析软件, 授权号:2009SR050167
4.专利软件名称:气流激振力分析软件, 授权号:2009SR049996
5.专利软件名称:密封泄漏分析软件, 授权号:2009SR050165
----
专利
1.袁鹰; 金永明; 蒋浦宁; 刘应征; 柯峰; 王炜哲, 动态压力传感器在线标定连接装置, 2006-10-11, 中国, ZL200520041732.1.
2.自抑制泄漏的密封结构形式,专利号:ZL 2012 2 0497548.8
3.自抑制有效通流面积的齿形结构,专利号:ZL 2012 2 0498041.4
4.齿顶间隙局部增阻密封齿形结构,专利号:ZL 2012 2 0498052.2
5.彭迪; 陈佳伟; 郭仲秋; 王炜哲; 刘应征, 一种基于AAO模板的柔性快响应PSP测试装置、方法与应用, 2017-08-17, 中国, CN201710707848.1
6. 基于降阶模型的瞬态热力状态在线评估方法、设备及介质,中国,2024-2-13,授权公告号:CN 113722860 B
7. 多相复合结构图像的载荷状态快速评估方法及设备,申请号:202210471459.4
8. 一种基于FPGA集成降阶模型的流动状态在线监测系统及方法,申请号:202310530402.1
9. 一种基于降阶组态的管网三维流动在线预测方法,申请号:202410221826.4
10. 一种基于数字孪生感知框架的状态监测和故障诊断方法,申请号:202411640055.9
2010, SMC-晨星优秀青年教师
2011, 新进青年教师启动计划
2015,年度考核优秀
2018, 上海交通大学机械与动力工程学院“最受欢迎毕业生导师
2022,机动学院优秀硕士论文(陈强强)
2023,国际会议DACOMA-23(Data-driven Computing and Machine Learning in Engineering 2023)学生最佳演讲奖指导老师
2024,上海产学研合作优秀项目