吴振华
助理研究员所在系所:制造技术与装备自动化研究所
电子邮件:wuzhenhua@sjtu.edu.cn
个人主页:
教育背景
2015.09-2020.03 上海交通大学 电子科学与技术 博士
2012.09-2015.06 武汉科技大学 冶金工程 硕士
2008.09-2012.06 武汉科技大学 冶金工程 学士
工作经历
2023.04-至今 上海交通大学 机械与动力工程学院 助理研究员
2020.08-2023.03 上海交通大学 仪器科学与技术 博士后
研究方向
光、热、电能量转换与应用
传感器与忆阻器
二维材料
学术兼职
编委:
Nanoscale Horizons 期刊,青年顾问编委
Microstructures 期刊,青年编委
Micromachines 期刊,客座编辑
审稿期刊
Materials Horizons, Nanoscale Horizons, Nanoscale, Energy, ACS Materials Letters, ACS Applied Materials & Interfaces, Journal of Colloid and Interface Science, ACS Applied Electronic Materials, ACS Applied Nano Materials, Organic Electronics, Nanotechnology, The Journal of Physical Chemistry, Journal of Physics D: Applied Physics, ECS Journal of Solid State Science and Technology等
科研项目
2023-2025 国家自然科学基金青年项目,主持
2021-2022 国家级X科创基金 (纳米功能防护薄膜),骨干
2018-2021 国家自然科学基金面上项目(结题优秀), 参与
2017-2018 国家级X预研项目 (微型电源), 骨干
2015-2016 全国重点实验室科技创新专项 (薄膜热学/电学传输特性),参与
2012-2015 湖北省自然科学基金创新群体资助项目,参与
代表性论文专著
[1] Z. Wu, Z. Wu, H. Lv, W. Zhang, Z. Liu, S. Zhang, E. Mu, H. Lin, Q. Zhang*, D. Cui, T. Thundat, Z. Hu*. Nanophotonic catalytic combustion enlightens mid-infrared light source. Nano Research, 2023, 16(9), 11564-11570.
[2] Z. Liu†, S. Zhang†, Z. Wu*(通讯), E. Mu, H. Wei, Y. Liu, H. Shi, Z. Hu*. High-performance integrated chip-level thermoelectric device for power generation and microflow detection. Nano Energy, 2023, 114, 108611.
[3] S. Zhang†, Z. Wu†(共一), Z. Liu, Z. Hu*. An emerging energy technology: self-uninterrupted electricity power harvesting from the sun and cold space. Advanced Energy Materials, 2023, 13, 202300260.
[4] S. Luo, S. Zhang, H.Yuan, Z. Wu*(通讯), M. Li*. 3D hierarchically branched Cu2S/ZnO heterojunction nanowire arrays for enhanced solar water splitting. Materials Today Communications, 2023, 34, 105417.
[5] Z. Wu, S. Zhang, Z. Liu, E. Mu, Z. Hu*. Thermoelectric converter: Strategies from materials to device application. Nano Energy, 2022, 91, 106692. (ESI高被引)
[6] Z. Liu†, Z. Wu† (共一), S. Zhang, Y. Lv, E. Mu, R. Liu, D. Zhang, Z. Li, Z. Hu*. Recognitions of colored fabrics/laser-patterned metals based on photo-thermo-electric effects. Science Advances, 2022, 8(33), eabo7500.
[7] Z. Wu, Z. Liu, S. Zhang, E. Mu, Z. Hu*. Interfacial modulated growth of nanostructured Bi2Te3 films for enhancing thermoelectric performance. Physica Status Solidi A-Applications and Materials Science, 2022, 219(16), 2200108. (封面论文)
[8] Z. Wu, Z. Hu*. Perspective−Powerful micro/nano-scale heat engine: Thermoelectric converter on chip. ECS Sensor Plus, 2022, 1, 023402.
[9] S. Zhang†, Z. Wu† (共一), Z. Liu, E. Mu, Y. Liu, Y. Lv, T. Thundat, Z. Hu*. Power generation on chips: Harvesting energy from the sun and cold space. Advanced Materials Technologies, 2022, 7(12), 202200478.
[10] S.Zhang†, Z. Wu† (共一), Z. Liu, Y. Lv, Z. Hu*. Nanostructured broadband solar absorber for effective photothermal conversion and electricity generation. Energies, 2022, 15(4), 1354.
[11] Z. Wu, Y. Feng, Y. Liu, H. Shi, S. Zhang, Z. Liu, Z. Hu*. Bipolar resistive switching in the Ag/Sb2Te3/Pt heterojunction. ACS Applied Electronic Materials, 2021, 3(6), 2766-2773.
[12] Z. Wu, S.Zhang, Z. Liu, C. Lu, Z. Hu*, Bottom-up (Cu, Ag, Au)/Al2O3/Bi2Te3 assembled thermoelectric heterostructures. Micromachines, 2021, 12(5), 480.
[13] Z. Wu, L. Lu, X. Liang, C. Dun, S. Yan, E. Mu, Y. Liu, Z. Hu*. Formation of hexagonal PdSe2 for electronics and catalysis. Journal of Physical Chemistry C, 2020,124(20), 10935-10940.
[14] Z. Wu, E. Mu, Z. Che, Y. Liu, F. Sun, X. Wang, Z. Hu*.Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance.Journal of Alloys and Compounds, 2020, 828, 154239.
[15] Z. Wu, X. Chen, E. Mu, Y. Liu, Z. Che, C. Dun, F. Sun, X. Wang, Y. Zhang, Z. Hu*.Lattice strain enhances thermoelectric properties in Sb2Te3/Te heterostructure. Advanced Electronic Materials ,2019, 6, 1900735.
[16] Z. Wu, E. Mu, Z. Wang, X. Chen, Z. Wu, Y. Liu, Z. Hu*. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Crystal Growth & Design, 2019, 19(7), 3639-3649.
[17] Z. Wu, X. Chen, Y. Zhang, C. Dun, D. L. Carroll, Z. Hu*. In situ electrical properties’ investigation and nanofabrication of Ag/Sb2Te3 assembled multilayers’ film. Advanced Materials Interfaces, 2018, 5(4), 1701210.
[18] Z. Wu, W. Zheng, G. Li*, H. Matsuura, F. Tsukihashi.Effect of inclusions’ behavior on the microstructure in Al–Ti deoxidized and magnesium treated steel with different aluminum content. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2015, 46(3), 1226-1241.
[19] Z. Wang, Z. Wu, Z. Hu*, J. Orrego-Hernández, E. Mu, Z. Zhang, M. Jevric, Y. Liu, X. Fu, F. Wang, T. Li*, K. Moth-Pouslen*. Chip-scale solar thermal electrical power generation. Cell Reports Physical Science, 2022, 3(3), 100789. (关联到联合国可持续发展目标7(UN-SDGs 7)。 (CRPS’ “Hot papers-2022”和“Impactful research”, GE News报道“本周地球上最酷的5件事”,瑞典皇家工程科学院2022年会年度“亮点”向瑞典国王和全体院士汇报,世界经济论坛短视频宣传,全球800+媒体(瑞典国家电视台、《泰晤士报》等)报道,阅读量超10亿次,Altmetric指数532)
[20] L. Xu, Z. Wu, Y. Han, M. Wang, J. Li, C. Chen, L. Wang, Y. Yuan, L. Shi, J. M. Redwing, X. Zhang*. Pseudosymmetric Epitaxy for Scalable Growth of Uniform Two-Dimensional Ferroelectric α-In2Se3 Monolayer. Nano Letters. 2025, 25(20), 8423-8430.
[21] E. Mu, Z. Wu, Z. Wu, X. Chen, Y. Liu, X. Fu, Z. Hu*. A novel self-powering ultrathin TEG device based on micro/nano emitter for radiative cooling. Nano Energy, 2019, 55, 494-500. (Science引文评价具有挑战的工作)
[22] W. Zheng, Z. Wu, G. Li*, Z. Zhang, C. Zhu. Effect of Al content on the characteristics of inclusions in Al-Ti complex deoxidized steel with calcium treatment.ISIJ International, 2014, 54(8), 1755-1764.
[23] Y. Liu, E. Mu, Z. Wu, Z. Che, F. Sun, X. Fu, F. Wang, X. Wang, Z. Hu*.Ultrathin MEMS thermoelectric generator with Bi2Te3/(Pt, Au) multilayers and Sb2Te3 legs. Nano Convergence, 2020, 7, 8.
[24] Y. Hou, W. Zheng, Z. Wu, G. Li*, N. Moelans*, M. Guo, B. Shahzad Khan. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels. Acta Materialia, 2016, 118(1), 8-16.
软件版权登记及专利
授权发明专利
[1] 可编辑超薄纵向多层串联结构热电薄膜和热电器件单元,专利号:ZL 201710232389.6;
[2] 一种可穿戴自供电多功能传感器及可穿戴监测设备,专利号:ZL 202110565522.6;
[3] 一种微型核能自供电集成电路芯片及其制备方法,专利号:ZL 201811523977.6;
[4] 一种具有空气隔热层的微型多层隔热结构及其制备和应用,专利号: ZL 202111490140.8;
[5] 一种二维过渡金属硫族化合物及其制备和应用,专利号:ZL 202211345215.8;
[6] 一种放射性同位素核电池薄膜及其制备方法, 专利号:ZL 202210836680.5;
[7] 一种模块化微型核电源、以及微型核电源装置,专利号:ZL 202210836670.1;
[8] 一种多孔氧化铝/聚苯胺光热材料及其制备方法和应用,专利号:ZL 202110534757.9;
[9] 基于薄膜热电器件的多颜色多材料光热传感器及试验设备,专利号:ZL 202110567316.9;