凉却喷射对透声喷嘴的热传递影响——第 I 部分：实验热传递结果及 CFD 验证

近期研究证明，透声喷嘴的气动热特性与亚音速情况下的特性显著不同。热冷却的影响在透声条件下对喷嘴尖端更为复杂。本文所进行的透声喷嘴实验数据是通过亚音速透声实验数据进行的。透声喷嘴的实验数据和 CFD 结果也得到了一致的结果，这些结果表明透声喷嘴内切削部分与冷却孔的相互作用在透声条件下更为复杂。进一步的 CFD 研究将被进行以更好地理解透声喷嘴的冷却行为。
et al. [21] found that deeper cavity brings higher effectiveness on a cutback squealer tip. Naik et al. [22] observed that the cooling effectiveness is high at the trailing edge cut of the partial squealer tip due to the exit of the tip leakage flow accumulated with coolant.

Most previous tip studies were carried out at low-speed conditions. The transonic aerothermal behavior of the over-tip-leakage (OTL) flow attracts much more attention in the recent years. Wheeler et al. [23] demonstrated the dramatic difference in tip heat transfer and flow structure between low-speed and transonic flows. For the first time, experiments by Zhang et al. [24] showed some distinct stripes of heat transfer coefficient on a transonic flat tip \(M_{exit} = 1.0 \), which indicates the existence of shock waves within tip gap. Zhang et al. [25] reported that the heat transfer ranking with respect to the tip clearance is reversed in the transonic part of the blade tip compared with the subsonic part. Zhang and He [26] demonstrated the breakdown of the low-speed pressure-driven wisdom when the OTL flow is choked. They showed that, in transonic flow regime, the over tip chocking caps the tip leakage mass flow rate. Similar results were later reported by Shyam et al. [27]. Zhang and He [28] also showed the strong interaction between aerodynamics and heat transfer for a transonic turbine blade tip. Other experimental studies under transonic conditions include O’Dowd et al. [29] and Anto et al. [30]. All the above studies consistently demonstrate that the conventional wisdoms at low-speed conditions need to be re-examined, while the OTL flow reaches transonic speed.

There have been a few experimental studies on the aerothermal performance of the transonic squealer tip. Dunn and Haldeman [31] measured the heat flux on a squealer tip for a rotating turbine stage at transonic conditions \(M_{exit} = 1.1 \). Key and Arts [32] found that the effect of Reynolds number on the velocity of the tip gap flow is smaller than that for a flat tip \(M_{exit} = 1.1 \). Virdi et al. [33] obtained the heat transfer data for a squealer tip in the high-speed linear cascade \(M_{exit} = 1.0 \). The experimental data showed good agreement with the numerical results in their study.

Very little tip cooling experimental data are available in transonic condition among the open literature. O’Dowd et al. [34] experimentally investigated the aerothermal performance of a cooled winglet tip \(M_{exit} = 1.0 \). There are a few numerical studies related with transonic tip cooling by Wheeler and Saleh [35], Wang et al. [36], and Zhou [37]. No experimental data have been reported so far on the squealer tip cooling under transonic conditions.

This two-part paper series aim to investigate the effect of cooling injection on a transonic squealer tip through a closely combined experimental and CFD effort. Part I presents the tip cooling experimental data obtained in a high-speed linear cascade (exit Mach number 0.95). To the authors’ knowledge, this is the first set of experimental data on the squealer tip cooling under transonic conditions. The experimental data are then used to validate the capabilities of numerical solvers.

The present experimental and computational results have consistently revealed some very strong interactive phenomena between over-tip-leakage flow and cooling injection, with distinctive aerothermal signatures for a transonic squealer tip. The related aerothermal flow physics behind these phenomena will be further examined, analyzed, and discussed in the companion paper as Part II [38].

2 Experimental Setup

2.1 Experimental Facilities and Conditions. A transonic blow-down wind tunnel in the Aero-Thermal Lab, University of Michigan-Shanghai Jiao Tong University Joint Institute Shanghai, China, was employed to conduct the transient heat transfer experiment in the present study, as shown in Fig. 1. Compressed air with a maximum pressure of 3 MPa is contained in a 10 m³ air storage tank. A fisher control valve (EWT body with 667 actuator and fieldvue DVC6000 controller) regulates the total pressure at the inlet of test section in the testing plenum. An extended karman filter (EKF)-based control algorithm was developed to predicatively adjust the valve opening during the blow-down process (Zheng et al. [39], Xi et al. [40]). Honeycomb screens and flow straighteners are located downstream of the control valve to ensure the flow quality. A heater mesh (0.080 mm in width and 0.050 mm in diameter) is installed before the testing plenum to heat up the mainstream flow during the heat transfer experiment. This heater mesh is connected to a 100 kW DC power supply. The test section is located inside a testing plenum with 1.8 m in diameter. The exhaust pipeline also has a regulating valve, so the pressure of the testing plenum could be adjusted to match the Reynolds number. More details for the flow characteristic and wind tunnel design are described in Ma et al. [41], Evans et al. [42], and Chen [43].

The test section is illustrated in Fig. 2. It consists of seven blades and six passages to achieve the optimal periodicity of the flow field. There are also two boundary layer bleeds on the two sidewalls. The blade has an axial chord \(C_x \) of 0.039 m and is scaled from a typical high-pressure turbine blade design condition. For the three blades in the middle of the cascade, the upper part was made from resin with low thermal conductivity by stereolithography technology, and the lower part was made from steel for fixing purpose. In the present study, the tip gap height is approximately 1% of blade span.

Table 1 lists six cooled squealer tip configurations investigated in the present study. There are two cooling hole spacings: 4d for the nine-hole cases and 8d for the five-hole cases. These cooling holes are located in three different locations in tip cavity: one near the pressure side (PS), one on the camberline (CAM), and one near the suction side (SS). For all these cases, the injection angle of the cooling holes is 90 deg. The diameter of the cooling hole (d) is 1.18 times the tip gap height (g).

Secondary cooling air was produced by a vortex tube system connected to a 600 kPa compressed air supply, as shown in Fig. 2.
Before entering into the blade tip region, the cold air was stabilized in a settling chamber, where the total pressure and total temperature of the coolant were measured. The settling chamber was insulated and placed close to the test section to avoid heat addition from the environment. A near 15 K deg of temperature drop was achieved by the cooling system.

The tip surface temperature history of the central blade was recorded by a FLIR A325 Researcher infrared (IR) camera with a spatial resolution of 320 x 240 at a frequency of 60 Hz, through a zinc-selenide (ZnSe) IR window. To minimize the uncertainties introduced by surface emissivity, IR window transmissivity, radiation from surroundings, etc., one thermocouple was embedded in the resin tip to be flush with the tip surface in order to perform in situ calibration of the IR images during a blow-down run. The thermocouple (K-type, Omega) has a wire diameter of 0.076 mm (0.003 in.) and response time of less than 80 ms. Figure 3 shows an example of the linear calibration relation between the image grayscale values and the temperature readings from a surface thermocouple. The same type of thermocouple was employed in the inlet total temperature sensor. National instruments (NI) PXIe DAQ system was employed to acquire pressure and temperature readings.

<table>
<thead>
<tr>
<th>Location of holes</th>
<th>Spacing between holes</th>
<th>Table 1 Cooled squealer tip configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS Camber line SS</td>
<td>4d</td>
<td>PS9 CAM9 SS9</td>
</tr>
<tr>
<td></td>
<td>8d</td>
<td>PSS CAM5 SSS</td>
</tr>
</tbody>
</table>

Fig. 2 Test section and the coolant supply system

Fig. 3 IR camera calibration curve
Flow conditions for the transonic turbine blade tip heat transfer experiment are summarized in Table 2. The total pressure ratio between the coolant and the inlet mainstream is 1.1 ± 0.01. The total temperature ratio between the coolant and the inlet mainstream is 0.9 ± 0.004. Detailed time histories of the inlet mainstream total pressure ($P_{0,i}$) and total temperature ($T_{0,i}$), as well as the coolant total pressure ($P_{0,c}$) and total temperature ($T_{0,c}$), are illustrated in Fig. 4. The ratio between the measured coolant mass flow rate and the cascade mass flow rate in a single passage (same as engine-equivalent mass flow rate given the current height of cascade inlet) is roughly 0.45% for all the nine-hole cases and 0.26% for all the five-hole cases. The inlet turbulent intensity is approximately 1%. The coolant supply system was precooled for 30 min before the blow-down experiment to reach the thermal steady state. The heater mesh was turned on 5 s after the opening of the control valve when both the temperature and pressure of the mainstream flow were stabilized. Two seconds of the transient thermal measurement data were used for data processing. Heat penetration depth was estimated to be 1.5 mm.

2.2 Data Reduction Method. In the present study, heat transfer coefficient (HTC, h) is defined according to the Newton’s law of cooling:

$$q'' = h(T_{ad} - T_w)$$ \hspace{1cm} (1)

where q'' is the heat flux, T_w is the wall temperature, and T_{ad} is the adiabatic temperature, which is also the fluid driving temperature in heat transfer. The local recovery effect in high-speed flow will remain unchanged once the local aerodynamic field reaches its steady state. Therefore, the adiabatic temperature for the cooled case is solely determined by the inlet mainstream total temperature (Mee et al. [44], Kays et al. [45]). For the cooled case, it is a mixture between the mainstream total temperature and the coolant temperature (Kwak and Han [19]).

During the transient thermal measurement process, the total temperatures of the inlet mainstream and the coolant both remain constant, as shown in Fig. 4. From the transient temperature history, q'' can be reconstructed using the impulse method by Oldfield [46]. This method has been employed in a series of previous studies (Zhang et al. [24,25], O’Dowd et al. [47]) and proved to be accurate, computationally efficient, and reliable. Next, for every IR pixel location on the blade tip, h and T_{ad} can be easily obtained by the linear regression between q'' and $T_{0,c}$ obtained during the 2 s transient time period. Figure 5 illustrates one example of the linear regression for a selected point on the tip surface. All data points are scattered evenly around the regression line. The coefficient of determination (R^2) in statistics (Devore [48]) is 0.934. The relative uncertainty in linear regression with 95% confidence (%U) is 4.9% (Coleman and Steele [49]). Such linear regression performance is highly repeatable over most of the tip surface.

To assess the reduction of the gas driving temperature by the cooling injection, cooling effectiveness is defined as ($O’Dowd$ et al. [34])

$$\eta = \frac{T_{ad,uc} - T_{ad,c}}{T_{ad,uc} - T_{0,c}}$$ \hspace{1cm} (2)

where $T_{ad,uc}$ is the adiabatic temperature for the uncooled case, $T_{ad,c}$ is the adiabatic temperature for the cooled case, which reflects the mixing between the coolant and mainstream temperatures, and $T_{0,c}$ is the coolant total temperature.

2.3 Uncertainty Analysis. Figure 6 shows the contours of R^2 and the relative uncertainty of heat transfer coefficient in linear regression (%U) for a cooled tip case (PS9). For most of the tip area, R^2 is above 0.92 and the relative uncertainty in linear regression is below 6%. However, near the cooling holes and the suction side rim, the linear regression performance is relatively poor, which should be caused by the lateral conduction error. Note that the overall uncertainty level reported for this cooled tip study is higher than that for the uncooled case (Ma et al [41]). This is mainly due to the increased flow unsteadiness with tip cooling injection.

Overall measurement uncertainties for the present heat transfer experiment are summarized in Table 3. With results from multiple runs, the average uncertainty values of h and η are ± 9.2% and ± 6%.
12.1%, respectively, which is within acceptable level compared to most heat transfer results in the open literature (Kwak and Han [15,19], O’Dowd et al. [34]).

3 CFD Method and Setup

ANSYS FLUENT is employed in the present study for numerical simulations. Two Reynolds-averaged Navier–Stokes (RANS) models, Spalart–Allmaras model (SA) and \(k-\omega \) SST model (SST), are implemented and validated against experimental data. The computational domain is a single-blade passage with periodic boundary condition, as shown in Fig. 7. For the coolant supply system, only the feed pipes above the plenum inside the upper blade are modeled. The geometric dimensions, such as the tip gap height, the configuration of cooling holes, feed pipe length, and the blade profile, are exactly the same as the experimental setup. The total pressure and total temperature at the cascade inlet and the inlet of coolant feed pipes, as well as the static pressure at the cascade outlet, are also set the same as the experimental study \((P_{0,i} = 180 \text{kPa}, T_{0,i} = 300 \text{K}, P_{0,c} = 198 \text{kPa}, T_{0,c} = 270 \text{K}, P_{e,c} = 101 \text{kPa}) \). Because the main focus of the simulation is on tip heat transfer, the boundary condition on the hub is set to be symmetric to reduce the computational cost. The effect of hub end-wall secondary flow on tip leakage flow is considered negligible. No-slip boundary conditions are imposed on all the solid walls.

Isothermal boundary conditions with two different temperatures \((250 \text{K and 260 K})\) are set on all the walls. The wall heat flux from these two cases is subtracted to calculate heat transfer coefficient according to Eq. (1). The assumption here is that heat transfer coefficient only depends on aerodynamics and is independent of the thermal boundary conditions, which is reasonable when the temperature change is small. To determine the cooling effectiveness, another case with adiabatic wall boundary conditions is also calculated.

Table 3 Measurement uncertainties

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall temperature, (T_w)</td>
<td>0.4% (300 ± 1.2 K)</td>
</tr>
<tr>
<td>Mainstream total temperature, (T_0)</td>
<td>0.4% (300 ± 1.2 K)</td>
</tr>
<tr>
<td>(h)</td>
<td>9.2%</td>
</tr>
<tr>
<td>(\eta)</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

Structured mesh with a grid size of \(5 \times 10^6 \) was generated by using Pointwise software. The maximum included angle is controlled within 140 deg. Smooth transitioning is guaranteed at the interface between different mesh blocks. The five-hole case uses the same mesh as the nine-hole case, with additional holes being blocked during numerical computation.

Detailed mesh sensitivity study has been carried out for both Spalart–Allmaras model (SA) and \(k-\omega \) SST model (SST). The averaged results are listed in Table 4. For all the cases, average \(y^+ \) value on tip surfaces is around one to resolve the near-wall boundary layer. The predicted average value of HTC and adiabatic temperature have relatively large change when the number of grid points across the tip gap is increased from 18 to 30, but their change is only marginal when the tip gap points are further increased to 42.

Figure 8 shows spatially resolved results of the relative difference in HTC between different grid sizes. Generally, the local HTC difference between 5 and \(7 \times 10^6 \) cells is less than one percent for the majority of the tip surface (except some area near the cooling holes). Figure 9 presents the nondimensional radially averaged OTL mass flux over the suction side rim. Grids with \(5-7 \times 10^6 \) sizes show same local distribution of leakage flow.

Table 4 Mesh and turbulence model dependence studies

<table>
<thead>
<tr>
<th>Grid size</th>
<th>3 (\times 10^5)</th>
<th>5 (\times 10^6)</th>
<th>7 (\times 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid points within tip gap</td>
<td>18</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>Average (y^+) on tip surfaces</td>
<td>SA 0.826</td>
<td>0.824</td>
<td>0.823</td>
</tr>
<tr>
<td></td>
<td>SST 0.887</td>
<td>0.883</td>
<td>0.886</td>
</tr>
<tr>
<td>Average HTC (\text{W/(m}^2\text{-K}))</td>
<td>EXP 1199.1</td>
<td>1199.1</td>
<td>1199.1</td>
</tr>
<tr>
<td></td>
<td>SA 1120.5</td>
<td>1102.7</td>
<td>1097.6</td>
</tr>
<tr>
<td></td>
<td>SST 1200.8</td>
<td>1273.8</td>
<td>1301.1</td>
</tr>
<tr>
<td>Average (T_{ad}/T_{0,i})</td>
<td>EXP 0.9800</td>
<td>0.9880</td>
<td>0.9887</td>
</tr>
<tr>
<td></td>
<td>SA 0.9889</td>
<td>0.9887</td>
<td>0.9887</td>
</tr>
<tr>
<td></td>
<td>SST 0.9912</td>
<td>0.9901</td>
<td>0.9903</td>
</tr>
</tbody>
</table>

Fig. 7 Computational domain and mesh employed in the present study

Fig. 8 Contours of the relative difference in HTC between the results from two meshes for the cooled case (PS5): (a) 3 and \(5 \times 10^6 \) and (b) 5 and \(7 \times 10^6 \)

Fig. 9 Nondimensional radially averaged OTL mass flux distribution on the suction side edge of the squealer tip for the cooled case (PS5)
along the blade. Therefore, the 5×10^5 mesh is considered adequate for the computations using either SA or SST turbulence model discussed later.

4 Results and Discussion

4.1 Turbulence Model Validation. Figure 10 shows the HTC distributions on the blade tip surfaces obtained from experiments (EXP) and CFD using Spalart–Allmaras model (SA) and \(k-\omega \) SST model (SST). For the uncooled case, HTC contour obtained from experiments is well predicted by the two models qualitatively for most of the tip surface. The \(k-\omega \) SST model performs better than the SA model in predicting the high HTCs over the cavity floor near the leading edge region. For the cooled case with nine holes near the PS rim, both turbulence models show good qualitative agreement with the experimental HTC distribution. However, the local HTC values near the cooling injection region are over-predicted by the \(k-\omega \) SST model by 50% or even bigger. In comparison, the SA model shows a better overall performance in matching the experimental data.

Figure 11 illustrates the circumferentially averaged HTC value along the axial chord. For both the uncooled and the cooled cases, the trend from both experiment and CFD data is consistent. SST model is better than SA model in the prediction of overall quantity. But the local over-prediction by \(k-\omega \) SST model in the region of cooling injection is averaged out. The quantitative discrepancy between experiment and CFD is within 30%. This may be caused by the limitation of the RANS models.

SA model has consistently demonstrated its satisfactory performance in predicting tip heat transfer in the recent tip heat transfer studies (Virdi et al. [33], Zhang et al. [24,25], and O’Dowd et al. [29,34]). Results by SA model are further discussed in Secs. 4.1–4.4 and in the Part II paper (Ma et al. [38]).

4.2 Heat Transfer Coefficient. Figure 12 shows the tip HTC distributions for cases with five and nine cooling holes placed near the pressure side rim. Experimental and CFD results show good agreement in the local qualitative pattern. As evident for all the cases shown in Fig. 12, cooling injection introduces some distinctive high HTC stripes on the cavity floor as well as the top of suction side rim. The abrupt HTC variations generally occur between the cooling holes. For both nine-hole and five-hole cases, the peak values and sizes of the HTC stripes on the cavity floor gradually decrease toward the trailing edge, while an opposite trend can be observed over the suction side rim. These heat transfer phenomena have been consistently captured by both experiment and CFD, which indicate that some complex interactions between cooling injection and over-tip-leakage flow are to be further exploited. Figure 12 also shows that higher HTC values are associated with the nine-hole case (PS9) in comparison with the five-hole case (PS5), both locally and globally. Potentially this could mean that adding more cooling holes to the squealer tip might not be necessary to guarantee an optimal net heat flux reduction if there is no significant improvement in cooling effectiveness.

Compared with the uncooled squealer shown in Fig. 10(a), the cooled cases in Fig. 12 illustrate an overall remarkable difference.

![Fig. 10 Contours of HTC on the blade tip surfaces obtained from experiments (EXP) and CFD using SA and \(k-\omega \) SST models: (a) uncooled and (b) cooled](image1)

![Fig. 11 Circumferentially averaged HTC value: (a) uncooled and (b) cooled](image2)

![Fig. 12 Contours of HTC for cooling holes near pressure side: (a) EXP and (b) CFD](image3)
in HTC distributions, which indicates a significant change in tip aerodynamics due to cooling injection.

Figure 13 presents the tip HTC distributions for cooling holes placed along the camberline on the cavity floor. Similar to Fig. 12, distinct HTC stripes can be observed downstream of the cooling injections, especially over the suction side rim. Despite of the qualitative agreement between experiment and CFD, the SA model seems to under-predict the local HTC variations over the cavity floor due to the highly unsteady interaction between the cooling injection and cavity flow.

Figure 14 shows the tip HTC distributions for cooling holes located near the suction side. Different from the other cooling configurations shown in Figs. 12 and 13, the HTC trend in Fig. 14 is quite similar to the uncooled case shown in Fig. 10(a), except the cooling flow signature over the suction side rim.

To sum up, two salient features are consistently observed in both experiment and CFD for several cases. First, distinctive thermal stripes exist on the cavity floor and the SS rim. Second, the strength of these stripes on the cavity floor decreases toward trailing edge, while an opposite trend is observed on the SS rim. These two heat transfer characters signify the strong interaction between the injected coolant and OTL flow.

4.3 Cooling Effectiveness. Contour of cooling effectiveness for the nine-hole case is presented in Fig. 15. In general, both experiment and CFD results show that the cooling effectiveness on most of the tip surfaces is very small, even near the cooling hole region. This is because most of the coolant is lifted off from the surfaces due to the upright injection, as explained in the II paper (Ma et al. [38]). Figure 15 also shows that cooling injection near PS rim can reach the SS rim and give the most coverage area. For the cases with cooling holes near the camberline or SS, some of the coolant is also pushed toward the trailing edge direction by the cavity flow. Similar pattern has been reported by Kwak and Han [19] for squealer tip cooling under subsonic conditions.

4.4 Net Heat Flux Reduction. To assess the combined effect of heat transfer coefficient and cooling effectiveness in engine-realistic conditions, the net heat flux reduction (NHFR) is defined by Sen et al. [50] and Newton et al. [18] as

$$\text{NHFR} = \frac{\dot{q}_w - \dot{q}_c}{\dot{q}_w} = 1 - \frac{h_c}{h_{ac}} (1 - \eta \Theta_E)$$

(3)

The nondimensional engine temperature is defined as

$$\Theta_E = \frac{T_a - T_e}{T_r - T_w}$$

(4)

where T_a is the air total temperature (1900 K), T_e is the coolant total temperature (880 K), T_w is the blade metal temperature (1200 K), and T_r is the recovery temperature. In the present study, T_r is derived by multiplying T_a with the recovery factor, which is obtained from the transient thermal measurement for the uncooled case. The assumption here is the recovery factor only depends on aerodynamics and can be scaled up to engine-realistic conditions.
The relevant underlining flow physics and causal vortical flow mechanisms will be examined and discussed in detail in Part II [36].

Acknowledgment

The authors gratefully acknowledge the financial support of Chinese National Science Foundation (51376127), the Innovation Program of Shanghai Municipal Education Commission, and the Aeronautical Scientific Funding.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS9</td>
<td>pressure side</td>
</tr>
<tr>
<td>CAM9</td>
<td>cooled</td>
</tr>
<tr>
<td>SS9</td>
<td>uncooled</td>
</tr>
</tbody>
</table>

Figure 16 illustrates the contour of net heat flux reduction for the case with nine cooling holes. Experiment and CFD results are in qualitative agreement. They consistently show that net heat flux reduction is positive in regions seemingly unreachable by the coolant, such as the leading edge or upstream of the cooling holes, yet it is negative in regions near the cooling holes where the coolant is supposed to cover. This unexpected result indicates that the strong interaction between the coolant and OTL flow in the tip gap changes the conventional cooling design philosophy obtained on blade surfaces. The interaction mechanism will be elucidated in the Part II paper [38].

5 Conclusions

An issue of general interest for HP turbine blade aerothermal designs is to what extent cooling injection from a blade surface would interact with the otherwise uncooled flow pattern. A squealer transonic rotor blade tip is of particular interest, for which there have been no published experimental studies needed for both enhancing the fundamental understanding and providing quality test data with sufficient spatial resolution for CFD validations.

In this two-part paper, a closely combined experimental and CFD investigation into a cooled squealer tip is presented. Here in Part I, experimental and computational setups and results are detailed. Transient thermal measurement data with high resolution are obtained in a high-speed linear cascade (exit Mach number 0.95). To the authors’ knowledge, this is the first of the kind of experimental data on the squealer tip cooling under transonic conditions. ANSYS FLUENT was used to simulate all the experimental cases. Detailed CFD sensitivity studies, including mesh dependence studies and turbulence model validations are carried out. The CFD results are qualitatively in good agreement with the experimental data. More importantly, all the relevant phenomena of interest are observed consistently based on both the CFD and the experimental results.

The present results demonstrate strong interactions between over-tip-leakage flow and cooling injection, signified by qualitatively different distributions of surface heat transfer coefficient when cooling injection is introduced. There are distinctive stripe patterns in HTC associated with discrete cooling holes. In addition, there appears to be an opposite trend in chordwise variations of the HTC stripes on the cavity floor compared to that on suction surface rim. Furthermore, a significant change in the net heat flux reduction is identified in the areas seemingly unreachable by the coolant. This may be attributed to the propagated impact on the local flow due to the strong base flow—cooling interactions.